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J. Phys. A :  Math. Gen. 15 (1982) 1591-1597. Printed in Great Britain 

On the significance of the radial Newtonian gravitational 
force of the finite cylinder 

A H Cook and Y T Chen: 
Cavendish Laboratory, University of Cambridge, England 

Received 17 September 1981 

Abstract. An exact analytical solution of the radial Newtonian gravitational attraction of a 
finite cylinder is given and leads to a discussion of the nonlinear terms in the equation of 
motion of the pendulum in Heyl’s determination of the constant of gravitation. The 
optimum shape of cylinder has a diameter to length ratio of Do/Lo = 1.029 282, giving the 
maximum gravitational attraction of cylinders having the same mass and density. 

1. Introduction 

Nearly 200 years ago, Henry Cavendish (1798) used the torsion balance to measure the 
first physical constant-Newtonian gravitational constant-in history. His result 
compares excellently with modern measurements (Heyl 1930, Heyl and Chranowski 
1942, Rose er a1 1969). But it is well known that the gravitational constant G, which is 
the first to be discovered, is the poorest known with only three figures confirmed. I t  is 
not compatible with its significance in physics. 

Different methods, torsion balance, beam balance, acceleration, etc have been used 
in laboratory determinations of the constant of gravitation and different kinds of 
attracting body have been used as well. A solid cylinder has been used as a suitable 
shape of attracting mass for the cylinder has many advantages in practice, easy to make 
and easy to measure the distances. But because of mathematical difficulties there is still 
no exact solution of the gravitational field of the  cylinder. Heyl published the result of 
his extensive mathematical calculations of the radial gravitational force of the cylinder 
in the form of a polynomial to nearly ten pages. An analytical exact solution of the 
gravitational field of a cylinder would be of value not only because of the mathematical 
interest but also for the practical reasons. The polynomial formula, beside making the 
calculations very laborious, is inconvenient for the study of some important problems. 
For example, in the measurement of G, the shape of the attracting cylinder should be 
chosen so as to maximise the attraction of the test mass. It is a practical problem. 
Furthermore, one of the authors (Cook 1970) pointed out ten years ago that, in Heyl’s 
experiment, the motion of the torsion pendulum under the attraction of the cylinders 
may be highly nonlinear, leading to systematic error in the reduction of the observation; 
the effects have not hitherto been explored in detail. All these works need an analytical 
formula for the field of the cylinder. 
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Recently one of us (Y T Chen) used a dummy variables transformation to overcome 
the mathematical difficulty of the problem. An exact formula for the radial Newtonian 
gravitational force produced by a finite cylinder at any point is published in this paper, 
so that the nonlinear character of the behaviour of the pendulum in the field of two 
cylinders (as in Heyl's experiment) can be explored. A discussion of the optimal shape 
of the cylinder is given. 

2. The radial attraction of a finite cylinder 

Consider a cylinder of length L, radius R and density p. We shall consider the attraction 
at any arbitrary point, but for the convenience of the derivation, a point P in the base 
plane of the cylinder is first considered. Take Cartesian coordinates with the x axis 
through point P. Let a be the radial distance of P from the centre line of the cylinder, so 
that the radial gravitational force due to the cylinder on the unit mass at the point P will 
be, (figure 1). 

'f 

Figure 1. 

On differentiating with respect to variable a and integrating with respect to z and x ,  
we find 

FL1) 2Gp(-I1+ 1 2 )  ( 2 )  
where I I  and I2 are 

) dy  
L + (L2 + R2+ a 2  + 2 a J R 2  - y2) ' I2  

L + (L2 + R2+ a2 - 2 a J R ' -  yi)''2 
11 = jo In ( 

1 R 2 + a 2 + 2 a J R 2 - y 2  
2 R 2 + a 2 - 2 a J R 2 -  y i  

In ( 
(3) 

(4) 
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Although there is only one variable in equation (3) ,  two variables were used in the 
following transformation 

) ‘ I 2  
[ = 1 +  l+- +L2 J i  - y 2 / ~ I  ( R’L:a2 2aR 

1 / 2  

Thus 
tZ [ B 2  -A2  + 2 A ( 5  - 1 ) 2  - (6 - 1)4]’ /2  

5 d5 I1 = I,, - 
12 [ B 2  -A2  + 2A(r ,  - 1)’- (77 - 1 ) 4 ] 1 / 2  

d77 +I,, 77 
where 

and 
A = 1 + ( R 2 + a 2 ) / L 2  

5 1 = l + ( A + B ) ’ / 2  t2= 1 +A’/’ 

t71 = 1 - ( A  - B)’/’ 

B = 2Ra/L2  

772 =l+A’ / ’ .  

(7) 

The two integrals in (7) have the same form of integrand but different limits. Because 
the two limits f 2  and 772 are the same, we can regard 6 and 7 as dummy variables, and 
write equation (7) as 

(8) 

Although we cannot give the analytical relationship between the variables y in equation 
( 3 )  and t in equation (8), the value of the integral (8) must be independent of the variable 
t, and so it is equivalent to equation (3) .  In this way, equation (2 )  becomes 

[ B 2  -A2 + 2 A  ( t  - 1 ) 2  - ( t  - 1)4]”2 1 + J ( A  + E )  
d t. 

I 1 = j  1 + J ( A - B )  t 

L2 

x { [ 1 + 2  R 2 + a 2  7 + J 1  + [ ( R  - a ) / L I 2 x  ( J 1  + [ ( R  + a) /LI2+-)  R 2 + a 2  
L 

] K ( k )  
1 

1-41 + [ ( R  - a ) / L J 2  

+2 - ( R  +a)‘ J 1 + [ ( R - a ) / L ] Z , ( , ~ , r , 2 ,  k ) ] + I o  L2 
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where 

Io  = { :R2’2a 
5 rra 

Ja + [ ( a  + R ) / L ] * - - d l  + [ ( a  - R ) / L ] *  
J 1  + [ (a  + R ) / L ] Z + J l  + [ ( a  - R ) / L I 2  

when a 3 R 

when a s R 

k =  

1 - J 1  + [ ( a  - R) /LI2  
l + J l + [ ( a + R ) / L ] ”  

f f 2 =  

K ( k ) ,  E ( k ) ,  ll($.rr, k ,  k )  and I I ($rr ,  a2, k )  are the elliptical integrals of the first, 

Equation ( 9 )  is the formula for the point in the end plane of the cylinder but with the 

( 1 1 )  

where L is the length of the cylinder and [ is the distance of the point Q from the end 
plane of the cylinder as shown in figure 1 .  

In Heyl’s experiment, the test mass was in the middle plane of the cylinder (see 
figure 2 )  so the attraction, according to equation ( 1  1 )  is 

( 1 2 )  

If ( < 0 in figure 1 ,  according to the superposition principle, equation ( 1  1 )  will become 

second and third kind respectively. 

superposition principle of gravitation the formula for an arbitrary point is 

F ~ / ~ G P  = Cy ( L  - l, R,  a 1 + Cy(l, R,  a 1 

FL2’ = 2FL” = 4GpCy(tL, R ,  a) .  

Fa/2Gp=Cy(L+IlI ,R,  a ) - C y ( l l l , R , a ) .  ( 1 3 )  

The radial Newtonian gravitational force of any complex co-axial cylinders will not 
be difficult to obtain from the following sum 

3. The implication for Heyl’s experiment 

Heyl measured the period of the torsional pendulum in the near position and far 
position from a pair of cylinders (see figure 2 ) .  He had paid great attention to the details 
of his experiment, so that although it was performed a long time ago (1930 and 1942) his 
result is still regarded as one of the most accurate results and quoted very often in the 
literature. 

As a check on Heyl’s approximate formula used in his calculations, the following 
comparison is an example. 

To illustrate the convergence of his series, Heyl calculated the attraction of a 
cylinder upon a point at the centre of its lateral surface, 

a = R = t L  = 10 cm. 

He kept eleven terms of his formula, the result is 

Ff’/.rraGp = 1.535 5797. 
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According to equations (12) and (9), this number is 

- = t [ & K ( k ) - - E ( k ) ]  Fa’ 2 = 1.535 5784. 
lraGp T JJ- 1 

We notice that this result is independent of the numerical value of a and R. 
It is clear from equation (9) that the motion of a test particle in the field is highly 

nonlinear, even though the displacement is very small. Consider the equation of motion 
of a pendulum with the cylinders in the near position (figure 2). 

Figure 2. 

For simplicity the mass of the beam is neglected and the mass m of the ball is taken to 
be unity. In the ideal case without damping, the Lagrangian function of the pendulum is 

(15) 

where Z is the moment of inertia of the whole pendulum, T is the modulus of torsion of 
the filament, assumed constant with respect to 8. V ( 8 )  is the potential energy in the 
field produced by the cylinders and can be obtained from the result in § 2 and the 
geometrical relation to figure 2. Then 

(16) 

3 = ;zi2 - v(e) --$e2 

av/ae = 8GpCy(tL, R, a )  ( b f / a )  sin 8. 

Thus the Lagrangian equation of motion becomes 

Ze+~8+8GpC,(iL, R,  a )  ( b f / u )  sin 8 = O .  (17) 

The function Cy(iL, R,  a )  is a function of 8. To show the nonlinear character of 
equation (17) when 8 is much less than 1, we expand C,(iL, R, a )  around the 
equilibrium point a. 
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so that the equation of motion with damping will be 

z ~ i + 2 ~ t j  + +*e +pe3 + ,,e5 +. . . = o 
where 

a = ~ G P  (bf lao)  cy(%, R, ao) 

Comparing the two coefficients a and P, the ratio is 

It is very easy to prove that 

so that the third term in the bracket of equation (21) is positive as well. Equation (19) 
shows that the period of the oscillation is a function of the amplitude and damping 
factor, but in the case of small amplitude and weak damping, we can assume equation 
(19) has the following solution 

( 2 2 )  8 = A  exp(-mt/I) cos ut + B exp(-mt/I) cos 3 wt 

where A, B are constant, and 

B < A < <  1 mt/I<c 1. 

w is the frequency of the pendulum at point 8. Insert the solution of equation ( 2 2 )  into 
the differential equation, then we have 

where eo, is the amplitude, that is, the period-amplitudedamping relation can be 
expressed by 

+. * . ]  1 m 2  T = T ,  I - - . -  3 P  e;+-*- [ 8 T + Q  2 Z ( T + ~ )  
where 

To=2.rrJI / (~+a)  

is the period for the zero amplitude without damping. 

4. Optimum shape of the cylinder 

The aim of this section is to decide the shape of the cylinder which can produce the 
maximum radial attraction among all cylinders with the same mass and density. The 
optimum shape of the cylinder is dependent upon the value of a, but because in the 
experiment of measuring G, the distance of test mass to the attracting mass should be set 
as close as possible, we are only interested in the case a - R. It may be proved that, in 
case of a 3 R, C,(L, R, a )  has no stationary points with respect to a. Thus we choose 
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the point a = R as the point at which to compare the magnitude of force for all the 
cylinders, because it is the point of maximum field for every cylinder. 

If a = R,  equation (9 )  can be simplified into 

1 - k  
k FL') =R[F K (k) - - E($*, k ) ]  2Gp. 

To find the ratio RIL, for which the expression ( 2 5 )  attains its maximum value under the 
following condition 

R2L =constant = Q (26) 
we use the Lagrangian method of undetermined multipliers and find the equation 
determining the stationary point of ( 2 5 )  subject to (26) to be 

K ( k ) - E ( $ r ,  k )  = O  R6 
Q 2  ( 1  + J 1  +4R6/QZ) (1  -J1 +4R"lQ2)2 

J 1  + 4 R 6 / Q 2 -  1 
J1 + 4 R 6 / Q Z +  1' 

+48- 

and according to equation (10)  

k =  

The solution of equation (27) having physical significance is 

R = 1.009 667(Q)''3 

or according to equation (26) 

R = 1.02928256L 

It is not difficult to show that this solution gives the maximum value of equation ( 2 5 ) .  
Similarly by the superposition principle of gravitation, if we put the test mass at the 
middle plane of the cylinder, the result is 

Do/Lo = 1.029 282 

where Do, Lo are the diameter and length of the cylinder. 
Further calculation has shown that this shape of cylinder can produce a gravitational 

attraction even greater than the maximum attraction produced by a sphere with the 
same mass and density, so that, in practice, we should choose the cylinder with a 
diameter to length ratio of roughly 1 which can give more gravitational efficiency. 

References 

Beams J W 1971 Phys. Today May 35 
Cavendish H 1798 Phil. Trans. R .  Soc. 88 467 
Cook A H 1968 Conremp. Phys. 9 227 
- 1970 Proc. In( .  Conf. on Precision Measurement and Fundamental Constants p 475 
- 1977 Conremp. Phys. 18 393 
Hey1 P R J 1930 Res. Nar. Bur. Srds. 1243 
Hey1 P R J and Chranowski P 1942 J. Res. Nar. Bur. Srds. 29 1 
Rose R D, Parker H M, Lowry R A, Kuhlthau A R and Beams J W 1969 Phys. Rev. Lerr. 23 655 


